2000 P.S.I. CONCRETE					4000 P.S.I. CONCRETE			
	TENSILE LOAD, LBS.		SHEAR LOAD, LBS.		TENSILE LOAD, LBS.		SHEAR LOAD, LBS.	
Diameter	Stone Aggregate Concrete	Lightweight Concrete	Stone Aggregate Concrete	Lightweight Concrete	Stone Aggregate Concrete	Lightweight Concrete	Stone Aggregate Concrete	Lightweight Concrete
3/4	8,530	5,400	16,400	12,650	12,900	6,300	21,750	17,500
1	15,200	.------	29,500	------.	23,000	------	39,300	.---.-.
$11 / 4$	23,000	------	47,600	----	35,000	-----	63,500	------

The above represents average ultimate holding power in shear and tension for anchors tested in each diameter, installed at minimum depth, or $41 / 2$ times bolt diameter.
Greater holding power is achieved by setting anchor deeper into the concrete.
A factory of safety suitable for the application should be applied to the above values to obtain required design loads.

The bolt diameter equals hole diameter for maximum strength and minimum volume of concrete that has to be removed. The hole depth should be a minimum of six times the diameter. Best results are achieved with carbide tipped bits in rotary or impact hammer drills.

The TECH STUD is tapped into the hole through the fixture to be fastened. Note: The clip is already in contact with hole surfaces to provide aid in positioning the bolt.

The clip bites into the concrete instantly, upon tightening of wrench.

